Author Affiliations
Abstract
1 Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi’an Jiaotong University, Xi’an 710049, China
2 Solid-State Lighting Engineering Research Center, Xi’an Jiaotong University, Xi’an 710049, China
3 Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
4 HKUST LED-FPD Technology R&D Center at Foshan, Foshan 528200, China
Modulation bandwidth and the emission region are essential features for the widespread use of visible light communications (VLC). This paper addresses the contradictory requirements to achieve broadband and proposes ultrafast, asymmetric pyramids grown on adjacent deep concave holes via lateral overgrowth. Multicolor emission with an emission region between 420 nm and 600 nm is obtained by controlling the growth rate at different positions on the same face, which also can provide multiple subcarrier frequency points for the employment of wavelength division multiplexing technology. The spontaneous emission rate distinction is narrowed by lowering the number of the crystal plane, ensuring a high modulation bandwidth over broadband. More importantly, the residual stress and dislocation density were minimized by employing a patterned substrate, and lateral overgrowth resulted in a further enhancement of the recombination rate. Finally, the total modulation bandwidth of multiple subcarriers of the asymmetric pyramids is beyond GHz. These ultrafast, multicolor microLEDs are viable for application in VLC systems and may also enable applications for intelligent lighting and display.
Photonics Research
2021, 9(4): 04000452
Yufeng Li 1Chenyu Wang 1Ye Zhang 1,2Peng Hu 1[ ... ]Feng Yun 1,2,*
Author Affiliations
Abstract
1 Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi’an Jiaotong University, Xi’an 710049, China
2 Solid-State Lighting Engineering Research Center, Xi’an Jiaotong University, Xi’an 710049, China
A full structure 290-nm ultraviolet light-emitting diode (UV-LED) with a nanoporous n-AlGaN underlayer was fabricated by top via hole formation followed by high-voltage electrochemical etching. The 20 to 120 nm nanopores were prepared in regular doped n-AlGaN by adjusting the etching voltage. The comparison between the Raman spectrum and the photoluminescence wavelength shows that the biaxial stress in the nanoporous material is obviously relaxed. The photoluminescence enhancement was found to be highly dependent on the size of the pores. It not only improves the extraction efficiency of top-emitting transverse-electric (TE)-mode photons but also greatly improves the efficiency of side-emitting transverse-magnetic (TM)-mode photons. This leads to the polarization change of the side-emitting light from ?0.08 to ?0.242. The intensity of the electroluminescence was increased by 36.5% at 100 mA, and the efficiency droop at high current was found to decrease from 61% to 31%.
Photonics Research
2020, 8(6): 06000806

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!